Efficient Bayes factor estimation from the reversible jump output

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Bayes factor estimation from the reversible jump output

We propose a class of estimators of the Bayes factor which is based on an extension of the bridge sampling identity of Meng & Wong (1996) and makes use of the output of the reversible jump algorithm of Green (1995). Within this class we give the optimal estimator and also a suboptimal one which may be simply computed on the basis of the acceptance probabilities used within the reversible jump a...

متن کامل

Reversible jump MCMC for nonparametric drift estimation for diffusion processes

In the context of nonparametric Bayesian estimation aMarkov chainMonte Carlo algorithm is devised and implemented to sample from the posterior distribution of the drift function of a continuously or discretely observed one-dimensional diffusion. The drift is modeled by a scaled linear combination of basis functions with a Gaussian prior on the coefficients. The scaling parameter is equipped wit...

متن کامل

Efficient reversible jump MCMC for Bayesian object recognition

Computational efficiency is a bottleneck for the use of stochastic geometry models in high-level Bayesian object recognition. In this paper we examine various approaches to reversible jump MCMC that lead to higher acceptance rates than the traditional approach of using a uniform proposal density. This is achieved by exploiting information about the posterior gained through a deterministic image...

متن کامل

An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations

Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore bo...

متن کامل

Reversible jump MCMC

Statistical problems where ‘the number of things you don’t know is one of the things you don’t know’ are ubiquitous in statistical modelling. They arise both in traditional modelling situations such as variable selection in regression, and in more novel methodologies such as object recognition, signal processing, and Bayesian nonparametrics. All such ‘trans-dimensional’ problems can be formulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2006

ISSN: 1464-3510,0006-3444

DOI: 10.1093/biomet/93.1.41